MMAT 5340 Assignment \#8
 Please submit your assignment online on Blackboard Due at 23:59 p.m. on Tuesday, Mar26, 2024

1. Consider a Markov chain $X=\left(X_{n}\right)_{n \geq 0}$ with a state space $S=\{1,2,3,4\}$ and the transition matrix

$$
A=\left[\begin{array}{cccc}
0.2 & 0.4 & 0 & 0.4 \\
0.3 & 0 & 0.7 & 0 \\
0.5 & 0 & 0.5 & 0 \\
0 & 0.1 & 0.9 & 0
\end{array}\right]
$$

Find the period $d(i)$ of each state, and which states are aperiodic?
2. Let $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ be a simple random walk. The state space S of $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ is the set \mathbb{Z} of all integers. We set $X_{0}=0$, and let the transition matrix P be defined by

$$
P(i, j)= \begin{cases}p, & j=i+1 \\ 1-p, & j=i-1 \\ 0, & \text { otherwise }\end{cases}
$$

for some constant $p \in(0,1)$.
Find the period $d(i)$ of each state, and which states are aperiodic?
3. Let $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ be a simple random walk on \mathbb{Z}^{d}. The Markov chain with a transition matrix is given as follows:

$$
P(x, y)= \begin{cases}\frac{1}{2 d} & \text { if }\|x-y\|_{1}=1 \\ 0 & \text { otherwise }\end{cases}
$$

for any $x, y \in \mathbb{Z}^{d}$, where $\|x-y\|_{1}:=\sum_{i=1}^{d}\left|x_{i}-y_{i}\right|$.
First, assume that $d=2$.
We divide the four directions into two groups, e.g. \{up, right\} and \{left, down\}. The Markov chain X could return to the origin 0 after $2 n$ steps, so choose n from $2 n$ for the location of each group as the number of up and right should be equal to the number of left and down. Finally, for each group and each $k \leq n$, we choose k from n for both groups since the number of up (right) should be equal to the number of down (left). It follows that the return probability in $2 n$ steps is given by

$$
P^{2 n}(0,0)=4^{-2 n}\binom{2 n}{n} \sum_{k=0}^{n}\binom{n}{k}^{2}
$$

(a) Show that

$$
P^{2 n}(0,0)=4^{-2 n}\binom{2 n}{n}^{2}
$$

Hint: Consider the coefficient of $(1+x)^{n}(1+x)^{n}=(1+x)^{2 n}$ for each $x^{k}, k \in$ $\{0,1, \cdots, 2 n\}$. Then use Multinomial Theorem to deduce that $\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$.
(b) Deduce that the series $\sum_{n=1}^{\infty} P^{2 n}(0,0)$ diverge, so that the random walk in dimension $d=2$ is recurrent.
Hint: Use Stirling's formula: $n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$ for large n.
Next, we assume that $d=3$.
Let us accept that, by similar arguments as in the case $d=2$, the return probability of the Markov chain in $2 n$ steps is given by

$$
P^{2 n}(0,0)=6^{-2 n}\binom{2 n}{n} \sum_{i+j+k=n}\binom{n}{i, j, k}^{2},
$$

where $\binom{n}{i, j, k}=\frac{n!}{i!j!k!}$.
(a) Show that

$$
\sum_{i+j+k=n}\binom{n}{i, j, k}=3^{n}
$$

Hint: We recall that, by Multinomial Theorem,

$$
\sum_{k_{1}+k_{2}+\cdots+k_{m}=n}\binom{n}{k_{1}, k_{2}, \cdots, k_{m}} x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{m}^{k_{m}}=\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n} .
$$

(b) Let us consider the Gamma function $\Gamma: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$, which is defined by,

$$
\Gamma(x+1):=\int_{0}^{\infty} t^{x} e^{-t} d t, \quad \forall x \geq 0
$$

We accept that, the second order derivative,

$$
\Gamma^{\prime}(x+1)=\int_{0}^{\infty} t^{x} e^{-t} \log t d t, \quad \Gamma^{\prime \prime}(x+1)=\int_{0}^{\infty} t^{x} e^{-t}(\log t)^{2} d t
$$

Show that the second order derivative of $x \longmapsto \log (\Gamma(x+1))$ is nonnegative, and deduce that the function $x \longmapsto \log (\Gamma(x+1))$ is convex.
Hint: For two functions $g(t):=\log (t), h(t) \equiv 1$, we define the inner product by $\langle g, h\rangle:=\int_{0}^{\infty} g(t) h(t) t^{x} e^{-t} d t$ and then apply the Cauchy-Schwarz inequality.
(c) Recall that

$$
\Gamma(k+1)=k!, \quad \text { for all positive integer } k .
$$

Deduce that if $i+j+k=n$, then

$$
\binom{n}{i, j, k} \leq\binom{ n}{n / 3, n / 3, n / 3} .
$$

Finally, use Stirling's formula to show for some constant C,

$$
\binom{n}{i, j, k} \leq C \frac{3^{n}}{n}
$$

Hint: For the first inequality, use Jensen's inequality for the convex function $\ln (n!)$.
(d) Deduce that $\sum_{n=1}^{\infty} P^{2 n}(0,0)<\infty$, so that the random walk in dimension $d=3$ is transient.
Hint: First write

$$
P^{n}(0,0)=\binom{2 n}{n}\left(\frac{1}{2}\right)^{2 n} \sum_{i+j+k=n}\binom{n}{i, j, k}^{2}\left(\frac{1}{3}\right)^{2 n}
$$

Then use results in (b) and (d), and find the upper bound for $\binom{2 n}{n}$.

